## <sup>14</sup>N and <sup>15</sup>N NMR Characterization and the Identification in Sulphur–Ammonia Solutions of the $S_7N^-$ Ion

Tristram Chivers,\*a Deane D. McIntyre,<sup>b</sup> Kenneth J. Schmidt,<sup>a</sup> and Hans J. Vogel<sup>b</sup>

Departments of Chemistry<sup>a</sup> and Biological Sciences<sup>b</sup>, The University of Calgary, Calgary, Alberta T2N 1N4, Canada

The cyclic sulphur imide, S<sub>7</sub>NH, and the thermally unstable S<sub>7</sub>N<sup>-</sup> ion have been characterized by <sup>14</sup>N and <sup>15</sup>N NMR spectroscopy; the existence of S<sub>7</sub>N<sup>-</sup>, in addition to S<sub>4</sub>N<sup>-</sup> and small amounts of S<sub>3</sub>N<sup>-</sup>, in sulphur–ammonia solutions is demonstrated by <sup>14</sup>N NMR spectroscopy.

The existence of the S<sub>7</sub>N<sup>-</sup> anion has been inferred from alkylation studies.<sup>1,2</sup> It decomposes above ca. -50 °C to give  $S_4N^-$  (and sulphur).<sup>3</sup> We have invoked the initial formation of  $S_7N^-$  to explain the production of  $S_4N^-$  in sulphur-ammonia solutions (SAS).<sup>4</sup> Subsequently Prestel and Schindewolf estimated from UV–VIS spectra that  $36 \pm 4\%$  of the dissolved sulphur in ammonia is in the form of  $S_7N^{-5}$  By contrast, Lelieur *et al.* found no evidence for  $S_7N^-$  in SAS by UV–VIS or Raman spectroscopy.614N and/or 15N NMR spectroscopy is an excellent technique for the analysis of complex mixtures of sulphur-nitrogen anions,<sup>7,8</sup> but the  $S_7N^-$  anion has not been characterized by this method. We demonstrate here by <sup>14</sup>N and <sup>15</sup>N NMR spectroscopy that S<sub>7</sub>N<sup>-</sup> gives rise to a resonance at ca. -320 ppm,<sup>+</sup> while S<sub>7</sub>NH exhibits a resonance at -364 ppm. The S<sub>7</sub>N<sup>-</sup> ion is also shown to be the major N-containing species in SAS at 25 °C. These results are at variance with a recent study in which this species was identified as S7NH.9

The natural abundance <sup>15</sup>N NMR spectrum of a 1 mu solution of S<sub>7</sub>NH in tetrahydrofuran (THF) at -80 °C displays a doublet [<sup>1</sup>J(<sup>15</sup>N-<sup>1</sup>H) 97 Hz] at -364 ppm [Figure 1(a)]. Upon addition of an equimolar amount of Bu<sup>n</sup>Li in hexane to this solution at -80 °C, this doublet disappears completely and instead a singlet at -318.8 ppm is observed. No other resonances are observed with the exception of dissolved N<sub>2</sub> at -71.5 ppm.<sup>10</sup> Therefore we attribute the resonance at -319 ppm to the S<sub>7</sub>N<sup>-</sup> anion.

The <sup>14</sup>N NMR spectrum of S<sub>7</sub>NH in THF exhibits a broad resonance centred around -364 ppm. No <sup>1</sup>*J*(<sup>14</sup>N–<sup>1</sup>H) can be observed due to the linewidth ( $v_{\frac{1}{2}} \approx 700$  Hz). After addition of an equimolar amount of Bu<sup>n</sup>Li in hexane to this solution at -80 °C, the chemical shift of the resonance due to S<sub>7</sub>N<sup>-</sup> could not be determined accurately owing to its broadness. At 25 °C, however, a resonance at *ca.* -327 ppm ( $v_{\frac{1}{2}} \approx 1000$  Hz) was observed in addition to the signal for S<sub>4</sub>N<sup>-</sup> at +106 ppm [*cf.*  $\delta$ (<sup>14</sup>N) +106 ppm for (Ph<sub>3</sub>P)<sub>2</sub>N+S<sub>4</sub>N<sup>-</sup> in MeCN].<sup>8</sup> The concentrations of S<sub>7</sub>N<sup>-</sup> and S<sub>4</sub>N<sup>-</sup> are approximately equal after one day at 25 °C.

The formation of sulphur–nitrogen anions in solutions of S<sub>7</sub>NH in liquid ammonia has been demonstrated by UV–VIS<sup>5,11</sup> and Raman spectroscopy.<sup>11</sup> The <sup>14</sup>N NMR spectrum of a deep blue solution of S<sub>7</sub>NH in liquid ammonia at 25 °C (after equilibrium has been reached) shows a major resonance at +107 ppm ( $v_{\pm}$  110 Hz) due to S<sub>4</sub>N<sup>-</sup> and a weak resonance at -324 ppm ( $v_{\pm}$  280 Hz) for S<sub>7</sub>N<sup>-</sup> [*cf.* -331 ppm for S<sub>7</sub>NH in NH<sub>3</sub>(*l*)]<sup>9†</sup> consistent with previous findings.<sup>5,11</sup> The production of sulphur–nitrogen anions in SAS was also monitored by <sup>14</sup>N NMR spectroscopy. After 2 h major resonances at -323 and +109 ppm attributable to S<sub>7</sub>N<sup>-</sup> and S<sub>4</sub>N<sup>-</sup>, respectively, and a very weak resonance at +231 ppm assigned to S<sub>3</sub>N<sup>-</sup>, [*cf.*  $\delta(^{14}N)$  +235 ppm for (Ph<sub>3</sub>P)<sub>2</sub>N+S<sub>3</sub>N<sup>-</sup> in MeCN],<sup>8</sup> are

apparent (Figure 2). Surprisingly,  $S_7N^-$  accounts for *ca*. 80% of the nitrogen-containing species and this increases to 88% after 5 days. By contrast, Woollins *et al.* have attributed resonances at -329, -38, +105, and +192 ppm<sup>+</sup> to  $S_7NH$ , an unidentified species,  $S_4N^-$  and NS<sup>+</sup>, respectively.<sup>9</sup> The existence of the extremely electrophilic NS<sup>+</sup> cation<sup>12</sup> in liquid ammonia solutions is highly unlikely.

In summary, we have characterized the thermally unstable  $S_7N^-$  anion by <sup>14</sup>N and <sup>15</sup>N NMR spectroscopy and shown that it is a major component of sulphur-ammonia solutions at room temperature. Raman and UV-VIS spectroscopy are more sensitive methods for the detection of S-N anions, but



**Figure 1.** The <sup>15</sup>N NMR spectrum (natural abundance) of (a) a 1 M solution of  $S_7NH$  in THF at -80 °C (2.5 h acquisition), (b) the same solution at -80 °C after the addition of 1 mol of Bu<sup>n</sup>Li in hexane per mol of  $S_7NH$  (2 h acquisition). Spectra were recorded at 40.56 MHz on a Bruker AM-400 wide-bore spectrometer using a 20 mm broadband probe (10 ml sample size). A pulse length of 40 µs provided a *ca.* 45° tip angle, and a 2.5 s repetition time was used. The spectral width was 25 000 Hz, and 16 K of data points were collected. The chemical shifts are referenced to MeNO<sub>2</sub>(*l*) at 0 ppm using the downfield positive convention.

<sup>&</sup>lt;sup>†</sup> Nitrogen NMR chemical shifts (in ppm) are quoted here with reference to external MeNO<sub>2</sub>(*l*) using the downfield positive convention. <sup>14</sup>N NMR chemical shifts in ref. 9 were given relative to NH<sub>3</sub>(*l*)  $[\delta(NH_3)(l) = -380 \text{ ppm } vs. \text{ MeNO}_2(l)].$ 



**Figure 2.** The <sup>14</sup>N NMR spectrum of a 1 mu (S atom) solution of S<sub>8</sub> in liquid ammonia after 2 h at room temperature (2 h acquisition). The spectrum was obtained at 36.14 MHz on a Bruker AMX-500 spectrometer (equipped with a 16-bit digitizer) using a 10 mm broadband probe. A pulse length of 40  $\mu$ s provided a *ca.* 90° tip angle, and no delay was used between pulses (acquisition time per pulse was 0.13 s). The spectral width was 30 000 Hz, and 8 K of data points were collected (zero filled to 64 K before processing). The chemical shifts are referenced to MeNO<sub>2</sub>(*l*) at 0 ppm using the downfield positive convention.

the use of <sup>14</sup>N NMR spectroscopy as a complementary technique is essential for a complete analysis of reaction mixtures.<sup>8,13</sup> Furthermore, the NMR technique can provide an unambiguous identification of  $S_7N^-$  in such mixtures because of the large separation of the <sup>14</sup>N chemical shifts of individual sulphur–nitrogen anions.<sup>13</sup>

The financial support of NSERC (Canada) and the Alberta Heritage Foundation for Medical Research is gratefully acknowledged.

## Received, 26th April 1990; Com. 0/018611

## References

- 1 B. A. Olsen and F. P. Olsen, *Inorg. Chem.*, 1969, **8**, 1736; E. M. Tingle and F. P. Olsen, *ibid.*, 1969, **8**, 1741.
- 2 M. H. Mendelsohn and W. L. Jolly, J. Inorg. Nucl. Chem., 1973, 35, 95.
- 3 T. Chivers and I. Drummond, Inorg. Chem., 1974, 13, 1222.
- 4 T. Chivers and C. Lau, Inorg. Chem., 1982, 21, 453.
- 5 H. Prestel and V. Schindewolf, Z. Anorg. Allg. Chem., 1987, 551, 21.
- 6 P. Dubois, J. P. Lelieur, and G. Lepoutre, *Inorg. Chem.*, 1989, 28, 195.
- 7 T. Chivers, A. W. Cordes, R. T. Oakley, and W. T. Pennington, *Inorg. Chem.*, 1983, **22**, 2429.
- 8 T. Chivers, D. D. McIntyre, K. J. Schmidt, and H. J. Vogel, Can. J. Chem., 1989, 67, 1788.
- 9 I. P. Parkin, J. D. Woollins, and P. S. Belton, J. Chem. Soc., Dalton Trans., 1990, 511.
- 10 D. D. McIntyre, A. W. Apblett, P. Lundberg, K. J. Schmidt, and H. J. Vogel, J. Magn. Reson., 1989, 83, 377, and references therein.
- 11 P. Dubois, J. P. Lelieur, and G. Lepoutre, *Inorg. Chem.*, 1988, 27, 3032.
- 12 A. Apblett, T. Chivers, and J. F. Fait, Inorg. Chem., 1990, 29, 1643.
- 13 T. Chivers and K. J. Schmidt, J. Chem. Soc., Chem. Commun., 1990, following communication.